Continuous Random Variables (Mean, Variance and Median) (From OCR 4733)

Q1, (Jan 2006, Q8)

<u>Q1, (Ja</u>	<u>n 2006, Q8)</u>			
(i)	$\int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1}$	M1		Integrate x^n , limits 0 and 1
	k/(n+1) = 1 so $k = n+1$	M1	•	Equate to 1 and solve for k
		<u>A1</u>	3	Answer $n + 1$, not 1^{n+1} , c.w.o.
(ii)	$\begin{bmatrix} 1 & n+1 \end{bmatrix}$ $\begin{bmatrix} x^{n+2} \end{bmatrix}^1 = 1$	M1		Integrate x^{n+1} , limits 0 and 1, not just $x.x^n$
(11)	$\int_0^1 x^{n+1} dx = \left[\frac{x^{n+2}}{n+2} \right]_0^1 = \frac{1}{n+2}$	A1		Answer $\frac{1}{n+2}$
	$\mu = \frac{k}{n+2} = \frac{n+1}{n+2}$ AG			
	n+2 n+2	A 1	3	Correctly obtain given answer
(!!!)	$\begin{bmatrix} x^6 \end{bmatrix}^1$	M1		Integrate x^5 , limits 0 and 1, allow with n
(iii)	$\int_0^1 x^5 dx = \left[\frac{x^6}{6} \right]_0^1 = \frac{1}{6}$	M1		Subtract $\left(\frac{4}{5}\right)^2$
	$\sigma^2 = \frac{4}{6} - \left(\frac{4}{5}\right)^2 = \frac{2}{75}$	A1	3	Answer $\frac{2}{75}$ or a.r.t. 0.027
(iv)	$N(\frac{4}{5}, \frac{2}{7500})$	B1		Normal stated
	(5 / /500)	B1		n+1
		B1√	3	Mean $\frac{4}{5}$ or $\frac{n+1}{n+2}$
				Variance their (iii)/100, a.e.f., allow √
(v)	Same distribution, translated	M1		Can be negative translation; <i>or</i> integration, must
				include correct method for integral
	Mean 0	A1√		(Their mean) $-\frac{4}{5}$, c.w.d.
	Variance $\frac{2}{75}$	B1√		Variance same as their (iii), or $\frac{2}{75}$ by integration
	73	3		\sqrt{a} arithmet same as their (iii), or $\frac{1}{75}$ by integration
Q2, (Ju	n 2007, Q7 <u>)</u>		,	
(i)	,	B1		Horizontal straight line
	\ /	B1		Positive parabola, symmetric about 0
		B1	3	Completely correct, including correct relationship
				between two
				Don't need vertical lines or horizontal lines outside
				range, but don't give last B1 if horizontal line continues past "±1"
				continues past ±1
(ii)	S is equally likely to take any value	B2	2	Correct statement about distributions (<i>not</i> graphs)
	in range, T is more likely at			[Partial statement, or correct description
	extremities			for one only: B1]
(iii)	$\int_{t}^{1} \frac{3}{2} x^{2} dx = \left[\frac{x^{3}}{2} \right]_{t}^{1}$	M1		Integrate $f(x)$ with limits $(-1, t)$ or $(t, 1)$
	$\int_{t}^{2} x dx = \left \frac{1}{2} \right _{t}$	D1		[recoverable if t used later]
	$\frac{1}{2}(1-t^3) = 0.2 \text{ or } \frac{1}{2}(t^3+1) = 0.8$	B1 M1		Correct indefinite integral Equate to 0.2, or 0.8 if [-1, t] used
	$t^3 = 0.6$	M1		Solve cubic equation to find t
	t = 0.8434	A1	5	•
			•	[, , ,]

Q3, (Jun 2009, Q7i,ii)

Q3, (J	<u>un 2009, Q7i,ii)</u>			
(i)	$\begin{bmatrix} 3x^4 & x^5 \end{bmatrix}^3$	M1 A1		Integrate $x^2 f(x)$ from 0 to 3 [not for μ]
	$\frac{2}{9} \int_0^3 x^3 (3-x) dx = \frac{2}{9} \left[\frac{3x^4}{4} - \frac{x^5}{5} \right]^3 = 2.7 - 1$	A1		Correct indefinite integral
	L - J0	B1		Mean is 1½, soi [not recoverable later]
	$(1\frac{1}{2})^2 = \frac{9}{20} \text{ or } 0.45$	M1		Subtract their μ^2
	20	A1	5	Answer art 0.450
				This wor are 0.100
(ii)	Г _{о 2 3} ¬0.5	M1		Integrate $f(x)$ between 0, 0.5, must be seen
(22)	$\frac{2}{9} \int_0^{0.5} x(3-x) dx = \frac{2}{9} \left \frac{3x^2}{2} - \frac{x^3}{3} \right ^{10}$	1,11		somewhere
	$\frac{1}{9}\int_{0}^{1} A(3-4)dA = \frac{1}{9}\left[\frac{1}{2} + \frac{1}{3}\right]$	Δ1	2	Correctly obtain given answer $\frac{2}{27}$, decimals other
	□ 10	731	_	
	$=\frac{2}{27}$ AG			than 0.5 not allowed, 1 more line needed (eg [] =
				1/3)
Q4, (J	un 2010, Q8 <u>)</u>			
(i)	$\int_{-\infty}^{\infty} x^{-a+1}$	M1		Integrate $f(x)$, limits 1 and ∞ (at some stage)
	$\int_{1}^{\infty} kx^{-a} dx = \left[k \frac{x^{-a+1}}{-a+1} \right]_{1}^{\infty}$	B1		Correct indefinite integral
		A1	3	Correctly obtain given answer, don't need to see
	Correctly obtain $k = a - 1$ AG			treatment of ∞ but mustn't be wrong. Not k^{-a+1}
(ii)	$\int_{1}^{\infty} 3x^{-3} dx = \left[3 \frac{x^{-2}}{-2} \right]_{1}^{\infty} = 1 \frac{1}{2}$	M1		Integrate $xf(x)$, limits 1 and ∞ (at some stage)
	$\int_{1}^{2} 3x dx = \left[\frac{3}{-2} \right]_{1}^{2} = \frac{1}{2}$	3.61		$[x^4 \text{ is not MR}]$
	x^{∞} x^{-1}	M1		Integrate $x^2 f(x)$, correct limits
	$\int_{1}^{\infty} 3x^{-2} dx = \left[3 \frac{x^{-1}}{-1} \right]^{\infty} - (1 \frac{1}{2})^{2}$	A1 M1		Either $\mu = 1\frac{1}{2}$ or $E(X^2) = 3$ stated or implied, allow $k, k/2$
	L 11	IVI I		Subtract their numerical μ^2 , allow letter if subs later

Final answer $\frac{3}{4}$ or 0.75 only, ewo, e.g. not from $\mu = -1\frac{1}{2}$. [SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]

Equate $\int f(x)dx$, one limit 2, to 0.9 or 0.1. [Normal: 0 ex 4]

Solve equation of this form to get 2^{a-1} = number Use logs or equivalent to solve 2^{a-1} = number

Answer, a.r.t. 4.32. T&I: (M1M1) B2 or B0

A1

M1*

dep*M1 M1 indept A1 4

 $\int_{1}^{2} (a-1)x^{-a} dx = \left[-x^{-a+1} \right]_{1}^{2} = 0.9$ $1 - \frac{1}{2^{a-1}} = 0.9, \ 2^{a-1} = 10$

Q5, (Jan 2012, Q7)

(i)	(a)	$\int_{1}^{4} \frac{1}{2\sqrt{x}} x dx = \left[\frac{1}{3}x^{\frac{3}{2}}\right]_{1}^{4} = 7/3 \text{ or } 2.333$	M1 B1 A1 [3]	Attempt to integrate $xf(x)$, correct limits Correct indefinite integral, a.e.f. Final answer 7/3 or equiv or a.r.t. 2.33
(i)	(b)	$\int_{1}^{m} \frac{1}{2\sqrt{x}} dx = 0.5$ $\sqrt{m - 1} = 0.5$ $m = 2.25$	M1 A1 A1 [3]	This or complementary integral, limits needed [not "-∞"], equated to 0.5, needn't attempt to evaluate This equation, any equivalent simplified form Answer 9/4 or exact equivalent only
(ii)		$1.5 \int_{1}^{\infty} y^{-2.5} y^{2} dx = 1.5 \left[\frac{y^{0.5}}{0.5} \right]_{1}^{\infty}$ Upper limit gives infinite answer	M1 B1 A1 [3]	Attempt to integrate $y^2 f(y)$, limits 1 and ∞ , allow any letter Correct indefinite integral $[=3\sqrt{y}]$, ignore μ $[=3]$ Give correct reason, c.w.o. apart from constant, allow "= ∞ "

Q6, (Jun 2013, Q5)

(i)	I		M1	Upwards parabola, not below x-axis	[scales/annotations not needed]
			A1	Correct place, not extending beyond limits, ignore pointed at <i>a</i>	Touching axes (not asymptotic)
		\	B1	Horizontal straight line, not beyond limits,	Don't need vertical lines
				<i>y</i> -intercept below curve (unless curve makes this meaningless)	i.e., 3/3 only if wholly right
			3		
(ii)	J,	$\int_{0}^{a} \frac{3}{a^{3}} x(x-a)^{2} dx$ $= \int_{0}^{a} \frac{3}{a^{3}} (x^{3} - 2ax^{2} + a^{2}x) dx$	M1	Attempt this integral, correct limits seen somewhere	
	=	$= \int_0^a \frac{3}{a^3} (x^3 - 2ax^2 + a^2x) dx$	M1	Method for $\int xf(x)$, e.g. multiply out or parts, independent of first M1	Multiplication: needs 3 terms
			A1	Correct form for integration, e.g. multiplied out correctly, or correct first stage of parts	E.g. $\frac{3}{a^3} x \frac{(x-a)^3}{3} - \int \frac{3}{a^3} \frac{(x-a)^3}{3} dx$
	=	$= \left[\frac{3}{a^3} \left(\frac{x^4}{4} - \frac{2ax^3}{3} + \frac{a^2 x^2}{2} \right) \right]_0^a$	B1	Correct indefinite integral	E.g. $\frac{3}{a^3} \times \frac{(x-a)^3}{3} - \frac{3}{a^3} \frac{(x-a)^4}{12}$
	=	$\frac{a}{4}$	A1 5	$\frac{a}{4}$ or exact equivalent (e.g. 0.25a) only	Limits not seen anywhere: can get M0M1A0B1A0

A L 0.40	11/10+6	sRevisio	
ALEVE	IIVIATN	ISKEVISIC	n.com

(iii)	S is concentrated more towards 0	M1	Reason that shows understanding of PDF	Not, e.g., "Tis constant"
	Therefore T has bigger variance	A1	Correct conclusion	
		2		

ı		2	l l
<u>Q7, (Jun</u>	2014, Q5)	_	
(i)	$c^1\pi$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	M1	Attempt to integrate $f(x)$, limits $(0, 1)$ somewhere, evidence e.g. "from calculator"
	$\int_0^1 \frac{\pi}{2} \sin(\pi x) dx = \left[-\frac{1}{2} \cos(\pi x) \right]_0^1 = \frac{1}{2} - \left(-\frac{1}{2} \right) = 1$	B1	Correctly integrate $\sin(\pi x)$ to $-\frac{1}{2}\cos(\pi x)$
		A1	Fully correct, need to see $-\frac{1}{2}\cos(\pi x)$ and final 1, no wrong working seen
	and function non-negative for all x in range	B1	Non-negative asserted explicitly, allow positive or equivalent. Not just graph drawn.
		[4]	(Most will not get this mark!)
(ii)	À	M1	Correct shape, through 0, allow below axis outside range. Allow partial curve if clearly
			part of sine curve.
		A1	Fully correct including no extension beyond [0, 1]. Don't worry about grads at ends.
			Ignore labelling of axes
	$E(X) = \frac{1}{2}$	B1	½ or 0.5, needs to be simplified, no working needed, no ft
	, ,	[3]	
(iii)	(1)0.75 ([1]1 -0.75)	M1	Equate integral to correct probability, correct limits somewhere
	$\int_{q}^{1} \frac{1}{2} \pi \sin(\pi x) dx = 0.75; \left\{ \left[-\frac{1}{2} \cos(\pi x) \right]_{q}^{1} = 0.75 \right\}$		allow complementary probability (= 0.25) only if limits (0, q)
	$\cos(\pi q) = 0.5$	A1	$cos(\pi q) = 0.5$ or exact equivalent
	Solve to get $q = \frac{1}{3}$	A1	$q = \frac{1}{3}$ or a.r.t. 0.333.
		[3]	SR: Numerical (no working needed): 0.333 B3, 0.33 B2
(iv)	$\int_{0}^{1} \pi$ 2 (1) ²	M1	Integral part correct, allow limits omitted, ignore dx
, ,	$\int_{0}^{1} \frac{\pi}{2} x^{2} \sin(\pi x) dx - \left(\frac{1}{2}\right)^{2}$	A1ft	Subtract their $[E(X)]^2$, allow μ in form of integral, correct limits needed, not just " μ^2 "
		[2]	{note for scoris zoning – (ii) needs to be visible here}
(v)	Values of x in range close to $E(X)$ are more	B1	Need to see "values of x" or equivalent, and probably not "occur"
` /	likely than those further away		Not "the probability of x is greater when x is close to $E(X)$ " etc. Not "PDF greater"
		[1]	
	1		

Q8, (Jun 2015, Q3)

(i)	$\int_{-3}^{3} \frac{3}{2a^3} x^2 dx = \left[\frac{x^3}{2a^3} \right]_{-3}^{3} = \frac{27}{a^3}$	M1dep*	Integrate, attempt at correct seen limits somewhere	Allow e.g. "< 3" = "≤ -4"
	$\begin{bmatrix} J_{-3} 2a^3 & \dots & 2a^3 \end{bmatrix}_{-3} = a^3 $ B1		Correct indefinite integral, can be	Allow also for a^3 on top
			implied by, e.g. $27/a^3$	
	= 0.125	*M1	Equate, with limits, to 0.125 and solve	
	so $a=6$	A1	Solve to get $a = 6$ exactly	Allow 6.00 but no other decimals. Not ± 6
		4		
(ii)	$\mu = 0$	B1	Stated somewhere or calculated, any a	If $\mu = 0$ not mentioned anywhere, or " $-\mu$ "
	$\begin{bmatrix} x^5 \end{bmatrix}^a 2\alpha^2$	M1dep*	Attempt to integrate $x^2 f(x)$, limits $\pm a$	stated [instead of " $-\mu^2$ "], B0 but can get
	$\int_{-a}^{a} kx^4 dx = \left[k \frac{x^5}{5}\right]_{-a}^{a} = \frac{3a^2}{5}$ $\begin{bmatrix} M1 dep^* \\ B1 \\ *M1 \end{bmatrix}$		Or exact equivalent, can be implied	remaining 4/5
		*M1	Equate to 1.35 and solve	Don't need explicit $-\mu^2$ here
	= 1.35 so $a = 1.5$	A1	$a = 1.5 \pm 0.005$, allow ± 1.5 , ignore	NB: $a = 3$ is <i>not</i> MR but can get B1 for $\mu = 0$
		5	"must be positive"	,
(iii)	x is a value [values] that X takes	B1	Ignore irrelevancies or extra wrong,	Not answers just about the function
		1	unless contradictory	

Q9, (Jun 2016, Q7)

(i)	[x represents a] possible value(s) taken by X	B1	1	Must refer to, or imply, both x and X or "the random variable" Ignore extra unless definitely wrong
(ii)	$\int_{2}^{\infty} ax^{-3} + bx^{-4} dx = \left[-\frac{a}{2x^{2}} - \frac{b}{3x^{3}} \right]_{2}^{\infty} = \frac{a}{8} + \frac{b}{24}$	B1 M1		Correct indefinite integral [from any set of limits or none] Integrate and substitute limits to obtain one expression
	or $\int_{1}^{\infty} ax^{-3} + bx^{-4} dx = \left[-\frac{a}{2x^{2}} - \frac{b}{3x^{3}} \right]_{1}^{\infty} = \frac{a}{2} + \frac{b}{3}$ or $\int_{1}^{2} ax^{-3} + bx^{-4} dx = \left[-\frac{a}{2x^{2}} - \frac{b}{3x^{3}} \right]_{1}^{2} = \frac{3a}{8} + \frac{7b}{24}$	M1 M1		Integrate and substitute limits to obtain a second expression The limits must be two of $(1, \infty)$, $(1, 2)$ or $(2, \infty)$, allow $(3, \infty)$ for " ≥ 2 " Equate two expressions from definite integrals to 1 or $\frac{3}{16}$ or $\frac{13}{16}$ as appropriate, and attempt to solve
	$\frac{a}{2} + \frac{b}{3} = 1 \text{ or } \frac{a}{8} + \frac{b}{24} = \frac{3}{16} \text{ or } \frac{3a}{8} + \frac{7b}{24} = \frac{13}{16}$ Solve to get $a = 1$ $b = \frac{3}{2}$	A1 A1 B1	7	Both equations correct, any equivalent <u>simplified</u> form, can be implied ["simplified" = one a term, one b term, one number term] Correctly show $a = 1$ AG , www Correct value of b obtained from at least one correct equation SC: One equation only: M1B1 M0M0A0 A0B1, max 3/7 Two equations, assume $a = 1$, solve for b, checked in other equation: 7/7
(iii)	$\int_{1}^{\infty} ax^{-2} + bx^{-3} dx = \left[-\frac{a}{x} - \frac{b}{2x^{2}} \right]_{1}^{\infty}$ $\left\{ = a + \frac{b}{2} \right\}$	M1 B1ft	3	Integrate $xf(x)$, limits 1 and ∞ seen somewhere Correct indefinite integral, their b , can be implied by correct answer $Expect to see \int_{1}^{\infty} x^{-2} + \frac{3}{2} x^{-3} dx = \left[-\frac{1}{x} - \frac{3}{4x^{2}} \right]_{1}^{\infty}$ Correctly obtain 13/4 or a.r.t. 1.75 www, allow from calculator
	$=1\frac{3}{4}$			